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Abstract  
The main goal of this paper is to study the effects of variable permeability and the fluid 

suction/injection on the mixed convection flow along a heated vertical plate embedded in saturated 

porous medium by Newtonian fluid with an internal heat generation. The surface temperature is 

assumed to vary as a power of the axial coordinate measured from the leading edge of the plate and 

subjected to an applied lateral mass flux. Several similarity solutions were obtained in terms of 

temperature parameter, but only three physical cases were studied: isothermal plate, uniform surface 

heat flux and uniform lateral mass flux at the plate. The non-linear equations of the similarity 

analysis with boundary layer conditions have been solved numerically using a fifth-order Runge-

Kutta scheme coupled with the shooting iteration technique. Also, the effect of the governing 

physical parameters on velocity and temperature, shear stress and Nusselt number profiles have 

been computed and studied with help of graphs. 
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Nomenclature 

A  wall temperature parameter wV  lateral mass flux 

a  equivalent thermal diffusivity ( 2 1m s−  ) v  velocity component in y  direction	
  ( 1ms− ) 

B  suction/injection velocity parameter x  coordinate along the plate	
  	
  (m ) 
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pC  specific heat of fluid	
  ( 1 1J Kg K− − ) y  coordinate normal to the plate (m ) 

f  dimensionless stream function β  thermal expansion coefficient (K ) 

wf  suction/injection parameter γ  mixed convection parameter 

xGr  modified local Grashof number ε  permeability parameter 

g  gravitational acceleration ( 2ms− ) η  similarity variable 

( )K y  permeability of porous medium ( 2m ) θ  dimensionless temperature 

( )K η  non-dimensional permeability λ  temperature exponent 

KB  Keller-Box method ν  kinematic viscosity ( 2 1m s− ) 

tK  thermal conductivity ( 1 1W m K− − ) ρ  fluid density ( 3Kg m− ) 

xNu  local Nusselt number ψ  stream function 

wQ  local heat flux at the plate surface (W ) w  wall plate condition 

xRa  modified local Rayleigh number ∞  infinity plate condition 

RE  relative error '  derivative with respect to η   

Rex  local Reynolds number   

4RK  fourth order Runge-Kutta method   

5RK  fifth order Runge-Kutta method   

T  fluid temperature (K )   

u  velocity component in x  direction	
  ( 1ms− )   

 

1. Introduction 
We call a porous medium, a solid part, including voids called pores which can communicate 

between them and containing one or more fluid phases being able to flow and, eventually, to 

exchange the energy and/or the matter between them and/or the solid part. There are numerous 

examples of natural or artificial porous media in everyday life : soil, porous rock, ceramics, textiles, 

leather and many others. A porous medium is characterized mainly by two related macroscopic 

quantities which are the porosity and permeability. 
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The appearance of temperature gradients within a porous medium leads to the existence of 

differences in density of the saturating fluid. Such differences may, under certain conditions, by 

action of gravity, be an influence on the velocity distribution of fluid in the medium. We then say 

that there is free convection of thermal origin, forced convection when the saturating fluid is driven 

by external mechanical force (pump, fan, ...) and mixed convection corresponds to the coupling of 

the two previous phenomena. 

The study of mixed convection in a saturated porous medium has attracted the attention of 

many workers due to its immense practical importance as well as a number of engineering and 

geophysical applications such as, in petroleum reservoirs, geothermal reservoirs, industrial and 

agricultural water distribution, drying of porous solids and cooling processes of nuclear reactors are 

just a few. Excellent reviews on this topic can be found in the books by Ingham and Pop (2005, 

[1]), Vafai (2005, [2]), Nield and Bejan (2006, [3]) and Vadasz (2008, [4]), and in the review paper 

by Magyari et al. (2005, [5]). The problem of free convection heat transfer from a vertical plate 

embedded in a fluid saturated porous medium is studied by Cheng and Minkowycz (1977, [6]). The 

mixed convection boundary layer flow on an impermeable vertical surface embedded in a saturated 

porous medium has been treated by Pal and Shivakumara (2006, [7]). The mixed convection 

boundary layer flow over a vertical permeable plate in a porous medium has been investigated by 

Nazar and Pop (2006, [8]). 

The majority of the above studies consider the permeability of the medium as constant. 

However, porosity measurements by Schwartz and Smith (1953, [9]), Tierney and al. (1958, [10]) 

and Benenati and Brosilow (1962, [11]) show that the porosity is not constant but varies from the 

wall to the interior due to which permeability also varies. Mohammadein and El-Shaer (2004, [12]), 

Singh (2012, [13]), Ibrahim and Hassanien (2000, [14]), have integrated the variable permeability to 

study the flow past through a porous medium and they show that the variation of permeability has 

greater influence on velocity and heat transfer. Vafai (1984, [15]) and Vafai et al. (1985, [16]), have 

investigated the variable permeability effect on forced convection flow. Chandrasekhara and 

Namboudiri (1985, [17]) studied the effect of variable permeability on combined free and forced 

convection about inclined surfaces in porous media using a similarity solution approach. The 

permeability effect on free convective boundary layer flow induced by a vertical flat plate 

embedded in a porous medium has been investigated by EL-Kabeir and Rashad (2006, [18]).  The 

mixed convection from a continuously moving vertical surface with suction or injection has been 

treated by Ali and Al-Yousef (1998, [19]). 

 



 

 

53 

Thus, the aim of the present paper is to investigate the effects of variable permeability due to 

packing of particles of the porous medium and the fluid suction/injection on the mixed convection 

boundary layer flow adjacent to a heated vertical plate in a saturated porous medium taking into 

account an internal heat generation. 

 

2. Mathematical modeling and similarity analysis 
A vertical flat plate embedded in saturated porous medium by Newtonian fluid with applied 

lateral mass flux in the direction normal to the plate proportional to  ( 1) /2x λ −
 quantity is considered 

as shown in Figure 1.  

 

 
Fig.1. Vertical heated plate in a saturated porous medium. 

 

The temperature distribution of the plate has been assumed as ( )w x A xT T λ
∞= + , where x  

is the distance measured along the vertical plate and λ  is the constant temperature exponent. T∞ is 

the temperature away from the plate assumed constant and A   is a positive constant. The Cartesian 

coordinates x   and y  are measured, respectively, along and perpendicular to the plate. The flow is 

supposed two-dimensional, steady and laminar for an incompressible fluid. The convective fluid 

and the porous medium are in local thermodynamic equilibrium anywhere and no dissipation of 

energy by viscosity. The permeability of the porous medium is assumed to be variable and the 

density of the medium is considered according to temperature. Radiation heat transfer is considered 

negligible with respect to other modes of heat transfer. In this paper, we work in the case of the 
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porous medium with the small filtration velocities (Reynolds number is less than 1) and the small 

permeability of the medium (practically of the order of 810− ).  For this, we can effectively neglect 

the inertia term in front of the viscous term.  Therefore the stationary Navier Stokes equations have 

for limit the Darcy equation after development.	
  

By considering the assumptions mentioned above and the Boussinesq approximation:  

 
(1 ( ))T T∞∞ρ = − β −ρ                                                 (1) 

 
The governing equations for this model are: 

   

0u v
x y
∂ ∂

+ =
∂ ∂

                                                                 (2) 

( ) ( )g K yu U T T∞∞
β

= + −
ν

                                   (3) 

2

2 p

T T Tu v a
x y Cy
∂ ∂ ∂ ϕ

+ = +
∂ ∂ ρ∂

                            (4) 

The boundary conditions associated with Eqs. (2) - (4) are: 

0 0 , ( ) ( )wwy x v x xV T T= ≥ = =                 (5) 

0 ,y x u U T T∞∞→∞ ≥ = =                   (6) 

where u  and v , are respectively, the velocity components along x  and y  axes. T  is the 

temperature of the fluid and ϕ  is the internal heat source. The constants ν , a , g  and ρ  are,  

respectively, kinematic viscosity, thermal diffusivity,  gravitational acceleration and density. 

pC and β  are, respectively, the specific heat at a constant pressure and the coefficient of thermal 

expansion, (λ 1)/2
w   xV B −=   is the lateral mass flux, where B   is a constant. 

Following Ress and Pop (2000, [20]), it is assumed here that the permeability, ( )K y  of the 

porous medium varies as:    
/( ) ( ) y L

wK y K K K e−∞ ∞= + −                                                                                                       (7) 

where wK  is the permeability at the wall, K∞  is the permeability of the ambient, and L is a 

constant. 

The continuity equation (2) is satisfied by the stream function ( , )x yψ  defined by: 

,u v
y x
ψ ψ∂ ∂

= =−
∂ ∂

                                                    (8) 
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The non-linearity of our model and the complexity of the phenomena encountered (boundary 

layer, instability, geometry of the porous medium, ...) make difficult its direct resolution.. The 

transformation of the PDE system, describing the problem studied in a simple non-linear 

differential equation becomes indispensable. 

To transform Eqs. (3) - (4) into a set of ordinary differential equations, the following 

dimensionless variables used by Postelnicu et al. (2000, [21]) are introduced: 

 
1/21/2

2

, ( , ) ( ), ( )

( ) ( ),

x x
w

w w x
px

y T Tx y a fRaRax T T
g K x a RaT T T TRa C ea x

∞

∞

∞ ∞∞ −η

−
η = ψ = η θ η =

−

β − −
= ϕ = ρ

ν

                                        (9) 

 
where Rax   is the Rayleigh number, f 	
  and θ   are the dimensionless similarity functions.  

 
From Eq. (7), we choose 1/2L x Ra−=  such that the non-dimensional permeability is purely 

function of η ,  and given by : 

 
( ) ( 1 ( 1) )K K e ηη ε −

∞= + −            (10) 
 

where wK
K

ε
∞

=   being the permeability parameter. 

When 1ε = , which corresponds to a uniform permeability, and when are greater than 1 corresponds 

to a non-uniform permeability cases. 

Eqs. (8) - (9) transform Eq. (3) and Eq. (4) into  

( )'( ) ( )Kf
K
η

η γ θ η
∞

= +                                                                                                         (11)

1''( ) '( ) '( ) ( ) '( ) 0
2

f f e ηλ
θ η λ η θ η η θ η −+

− + + =                                                              (12) 

The boundary conditions (5) and (6) transform into 

0 (0) , '(0) , (0) 1wf ffη = = = γ + ε θ =                                                                          (13) 

'( ) , ( ) 0fη→∞ ∞ = γ θ ∞ =                                                                                                  (14) 

 

By injecting the Eq. (11) in the Eq. (12), we get the following non-linear differential equation: 
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2 1'''( ) 3 ( ) ''( ) ( ( ) ) '( ) '( ) ( )
2

( ( ) ''( ) ( ) ( ) '( ) ( ) ( ) )
1 ( )

( ) 0

f M f N f f

ef f M f f M f
M

N

η

λ
η η η λ γ η η λ η

η η η η η γ η η
η

γ η

−

+
+ + + − + ×

+ − + −
−

=

                                             (15) 

and the boundary conditions Eqs. (13) – (14)  are reduced to Eqs. (16) – (17)  

0 (0) , '(0)wf ffη = = = γ + ε                                                                                    (16)

'( )fη→∞ ∞ = γ                                                                                                           (17) 

 where 
1/ 2

2
1w
B

f
a g K A

⎛ ⎞ν
= − ⎜ ⎟

λ+ β ∞⎝ ⎠
 is the suction/injection parameter, 

Rex
xGr

γ =  is called the 

mixed convection parameter, where Rex
U x
ν
∞=   and 2

( )w
x
g K T T x

Gr
β

ν
∞ ∞−

=  . 

( )M η  and ( )N η  are the similarity functions such that: 

2

2

( ) 1
( )

( ) 1 2 3
( )( )

K
M

K
K K

N
KK

η
η

η
ηη

∞

∞ ∞

= −

= + −

                                                                                                        (18) 

The local heat flux at the plate surface is given by: 

0
1/ 2 (3 1) / 23/ 2 '(0)

tw
y

t

TQ K
y

S xK A

=

λ−

⎛ ⎞∂= − ⎜ ⎟∂⎝ ⎠

= − θ

                                                          (19) 

where g K
S

a
β
ν

∞= ,  '(0)θ  is the gradient of the temperature at the plate surface and tK  is the 

thermal conductivity. 
 

The local Nusselt number is defined as: 

1/2'(0)x xNu Ra= − θ                                                                                                                    (20)   

Expression for shear stress  τ   can be developed from the similarity 

solution: 2

3/2

''( )xa Ra
f

x
µ

τ η=                                                                                                                     

(21) 

where ''( )f η describes the dimensionless shear stress distribution in the boundary layer area and 

the particular value at 0η =   represents the dimensionless shear stress on the plate surface.  
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3.Numerical solution method 
The third order ODE Eq. (15) governed by the boundary conditions Eqs. (16) - (17), is non-

linear. However it is still difficult to solve it analytically. For this, we can routinely rewrite it as a 

system of three first order ODEs by posing: 

1 2 3( ) , '( ) , ''( )f f fg g g= η = η = η                 (22) 

So the non-linear differential Eq. (15) is equivalent to the system of differential equations of 

the first order  Eq. (23) coupled with the appropriate boundary conditions Eq. (24): 
'
1 2
'
2 3
' 2
3 3 2 2

1 3 1 2 1

3 ( ) ( ( ) )
1( ) ( ( ) ( ) )
2

( )
1 ( )

g g
g g
g M g N g g

g g M g g M g

e N
M

η

η λ γ η λ

λ
η γ η

γ η
η

−

⎧ =
⎪

=⎪
⎪ = − − + + −⎪
⎪ +⎨ + − −
⎪
⎪
⎪ +

−⎪
⎪
⎩

                 (23) 

1 2

2

0 ,wg f g
g

η γ ε

η γ

= = = +⎧
⎨

→∞ =⎩
                                        (24) 

The system of differential equations Eq. (23) subject to the boundary conditions Eq. (24) has 

been solved numerically by the fifth-order Runge-Kutta scheme associated with the shooting 

iteration technique. 

Since we have the initial conditions on 1g  and 2g , it would be natural to seek the condition on  

3g  at 0η =  ( 3 (0)g ). For given values of λ   the value of 3 (0)g   is estimated and the differential 

equations of the system Eq. (23) were integrated until the boundary condition at infinity, 2 ( )g η  

decay exponentially to γ . If the boundary condition at infinity is not satisfied, then the numerical 

routine uses the calculate correction to the estimated value of 3 (0)g . This process is repeated 

iteratively until exponentially decaying solution in 2g   is obtained. A step size of  0.0001ηΔ =   was 

found to be sufficient to give results that converge to within an error of 610−   in nearly all cases. The 

value of  η∞   was chosen as large as possible. 

4. Numerical results and discussions 
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Similarity solutions are obtained for distinct values of the temperature exponent λ  and 

suction/injection parameter wf . However, only three physical solutions were selected for 

0, 1 / 3λ =  and 1 which corresponds to isothermal plate, uniform surface heat flux and linear 

temperature distribution with uniform lateral mass flux at the plate, respectively. The calculations 

were performed for different cases of the suction/ injection parameter wf   which corresponds to the 

suction ( 0wf > ), injection ( 0wf < ) and impermeable plate ( 0wf = ). We notice that the importance 

of heat transfer regime relative to the other is characterized by the mixed convection parameter γ    

such that: 0γ =  corresponds to the free convection, 1γ =  corresponds to the mixed convection and 

1γ >   corresponds to the forced convection. 

The comparisons are made with Postelnicu et al. (2000, [21]) and Cortell (2010, [22]) results in 

terms of '(0)θ  with various values of suction/injection parameter wf   and temperature exponentλ , 

are presented in Table 1. Although, all the relative errors from the previous results are less than 1% 

for 1/ 3λ = . The present method yields results which are generally in good agreement with those of 

Postelnicu et al (2000, [21]) and Cortell (2010, [22]).  However, it could be said here with a positive 

note that the method used in this current model converges rapidly and accurately when compared to 

the method adopted by the previous work. 

 
1/2''(0) '(0) x xf Nu Raθ −− = − =  

λ   (0)f   '(0)f   
[21]          

  (KB) 

[22] 

(RK4) 

Present results 

(RK5)  
RE / [21] RE / [22] 

   1/ 3  

-1.0 1 -0.0662 -0.066178 -0.066291 0.13 % 0.17 % 

-0.6 1 -0.0094 -0.009357 -0.009433 0.35 % 0.80 % 

 0.6 1  0.2869  0.286887 0.286969 0.024 % 0.028 % 

1.0 1  0.4289  0.428891 0.428903 0.00069 % 0.0027 % 

 
Tab.1. Comparison of the temperature gradient at the plate surface with previously published results 

for 1 / 3λ = , 0wf ≠  and 0γ =   when 1ε = . 
 

Figure 2 shows the temperature profiles in the boundary layer area for an isothermal and 

impermeable plate drowned vertically in a saturated porous medium with a variableK . It is seen, 

from this figure, that the increase of the parameter γ  reduces the temperature profiles in the 
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boundary layer area. This may be due to the intensity of the flow velocity and the high permeability 

close to the plate which promote the fast cooling around it. 

 

 
Fig.2. Dimensionless temperature profiles at 0λ = , 0wf =   and 5ε =   for selected values ofγ . 

 

 
Fig.3. Dimensionless temperature profiles for 0λ = ,	
   1γ = 	
  and 0wf ≠  at 1ε =  and 2ε = . 

	
  

In Figures 3, 4 and 5 we present for 1γ =  , the temperature profiles for a vertical permeable 

plate embedded in a saturated porous medium with a uniform ( 1ε = ) and a non-uniform ( 2ε = )  
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permeability and for 0, 1 / 3λ λ= =   and 1λ =  which corresponds physically to isothermal plate, 

uniform surface heat flux and uniform lateral mass flow at the plate, respectively. It is clear that the 

fluid suction through the plate generates cooling in the boundary layer area for the two values ofε . 

	
  

 
Fig.4.	
  Dimensionless temperature profiles	
  for 1 / 3λ = , 1γ =  and 0wf ≠  at 1ε =  and 2ε = .	
  

	
  

	
  

Fig.5. Dimensionless temperature profiles	
  for 1λ = , 1γ =  and 0wf ≠  at 1ε =  and 2ε = . 
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Furthermore, we notice that for the two values of wf   (suction/injection), the non-uniformity of 

the porous medium permeability contributes to the rapid decrease of the temperature adjacent to the 

plate which is normal since the permeability of the porous medium near the plate is more important 

than away from the latter. 

The displayed Figure 6 shows the dimensionless velocity profiles in the boundary layer area 

for an isothermal and impermeable plate with non-uniform K , for three heat transfer regimes 

 ( 0γ = , 1γ = , 1γ > ). We notice that the velocity profiles are amplified and stabilized quickly in 

passing from the free convection ( 0γ = ) to forced convection ( 1γ > ). This can be justified by the 

positive effect of the imposed flow velocity away from the plate and the high permeability near the 

plate. 

Figures 7, 8 and 9 show for 1γ = , the dimensionless velocity distributions in the boundary 

layer area with a uniform ( 1ε = ) and a non-uniform ( 2ε = ) permeability and for three physical 

values of 0, 1 / 3λ =  and 1.  Here, we also find that the fluid suction at the plate leads to the 

reduction of the velocity profiles. On the other hand, it is clear that the non-uniformity of the porous 

medium permeability in the fluid suction and injection cases permit to accelerate the velocity flow 

near the plate and this is quite logical to fact that the media porous near the plate is more permeable 

than it away from the later. This is consistent with the observations made in the results for the 

dimensionless temperature discussed above. 

 

 
Fig.6. Dimensionless velocity profiles at 0λ = , 0wf =   and 5ε =  for selected values of γ .	
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Fig.7. Dimensionless velocity profiles for 0λ = , 1γ =  and 0wf ≠  at 1ε =  and 2ε = . 

 

 
Fig.8. Dimensionless velocity profiles for 1 / 3λ = , 1γ =  and 0wf ≠  at 1ε =  and 2ε = .	
  

	
  

Figure 10 describes for 1γ = , the dimensionless shear stress profiles around the isothermal and 

impermeable plate for various values of the parameterε . It is remarkable that the frictional forces 

become important near the plate where the porous medium is more permeable. This can be 
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physically justified by the effect of the flow velocity which is important close to the plate and that 

promotes the shear stresses. 

 
Fig.9. Dimensionless velocity profiles for 1λ = , 1γ =  and 0wf ≠   at 1ε =  and 2ε = .	
  

 

 
Fig.10. Dimensionless shear stress profiles for 0λ = , 1γ =  and 0wf =  for various values of ε . 

 

Figure 11 shows that for an isothermal plate, the local Nusselt number profiles according to the 

mixed convection parameter γ  in the boundary layer area for uniform and non-uniform 

permeability of the porous medium in the cases of impermeable plate, fluid suction and injection. It 
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is clearly remarkable that the non-uniformity of the porous medium permeability allows amplifying 

the rate of heat transfer in the boundary layer area for various values of wf . We also note that the 

rate of heat transfer increases with the fluid suction around the plate. On the other hand, the heat 

transfer rate increases with γ  in the two cases of the porous medium permeability ( 1ε = and 2ε = ). 

It’s obvious that the fact that the non-uniformity of the porous medium permeability, the fluid 

suction along the plate and the great values of the parameterγ , all contributes to the intensity of the 

flow velocity in the boundary layer area which promotes the heat transfer by convection. 
	
  

	
  

 
Fig.11. Nusselt number profiles according to γ   at 0λ =  for selected values of  wf and ε .   

 

5. Conclusion 
The similarity equations are solved numerically by using the fifth-order Runge-Kutta scheme 

associated with the shooting iteration technique. The influence of the parameters ε , γ , wf  and λ  
on dimensionless temperature and velocity, dimensionless shear stress and local Nusselt number 
profiles have been examined and discussed in details. Special cases are considered for the 
temperature exponent λ  with the lateral mass flux controlled by the suction/injection parameter wf . 
From the present numerical study, we conclude that: 
 

• The 

passing from the free convection regime to the forced convection, the flow velocity is 

amplified and the temperature field decreases in the boundary layer area respectively and 

they quickly stabilize in a porous medium with high permeability ( wK K∞> ). 
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•  In the 

mixed convection regime, the fluid suction along the plate reduces the thickness of the 

thermal and dynamic boundary layer. 

•  In the 

case of the mixed convection regime, the non-uniformity of the porous medium 

permeability ( wK K∞> ) promotes the advantage, the intensity of the flow velocity and the 

shear stresses in the boundary layer area. 

•  In the 

variable permeability case, the rate of the heat transfer is much higher than in a uniform 

permeability case for different heat transfer regimes and for various values of  the 

suction/injection parameter. 
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